
Basic EPICS Device Support
i

Basic EPICS Device Support

Basic EPICS Device Support
ii

COLLABORATORS

TITLE :

Basic EPICS Device Support

ACTION NAME DATE SIGNATURE

WRITTEN BY Michael Davidsaver April 2009

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1 April 2009 Initial revision MAD

Basic EPICS Device Support
iii

Contents

1 Introduction 1

2 Prepare IOC environment 1

3 PRNG Example 1

3.1 Device Definition . 2

3.2 Writing Support . 2

3.3 Building . 3

3.4 Database Configuration . 4

3.5 Running . 4

4 Asynchronous Example 4

4.1 Running . 7

5 Now What 7

6 References 7

Basic EPICS Device Support
1 / 7

1 Introduction

Device support is the means of providing functionality specific to access hardware. This is done by providing several functions
which the record support layer will call when appropriate. The functions which must be provided depend on the record type
being supported. The Record Reference Manual[RecRef] provides a list of record types with descriptions and lists of device
support functions. To determine the exact form of a record’s device support functions the source found in $EPICS_BASE/src/rec
is invaluable.

2 Prepare IOC environment

It is assumed that EPICS Base is already built, that EPICS_BASE is set, and that the EPICS executables are in the system search
PATH.

All paths given in this example are assumed to be relative to the devsumexample directory.

$ mkdir devsupexample $ cd devsupexample

3 PRNG Example

Let us begin with an example. The Analog input record is intended to represent a value read from hardware and interpreted as a
floating point number. This does not imply that the underlying hardware representation is a floating point number. The AI record
support provides a facility for conversion between a raw integer value and a floating point number.

In this example the hardware device to be read is the system pseudo random number generator. Whenever the record is processed
a new number is read into the process variable (PV) database.

makeBaseApp.pl -t ioc prng

This creates the makefiles needed to compile the code. The files we are about to create will be placed in prngApp/src. Later when
.db files are created we will place them in prngApp/Db.

Take a moment to examine the files in prngApp/src. The file prngMain.cpp will be the point of entry for our IOC when run on a
non-embedded platform. It is not very interesting through as it serves only to invoke the IOC shell.

The prngApp/src/Makefile does contain several interesting entries. Removing comments and blank lines leaves the following.

TOP=../..
include $(TOP)/configure/CONFIG
PROD_IOC = prng
DBD += prng.dbd
prng_DBD += base.dbd
prng_SRCS += prng_registerRecordDeviceDriver.cpp
prng_SRCS_DEFAULT += prngMain.cpp
prng_SRCS_vxWorks += -nil-
prng_LIBS += $(EPICS_BASE_IOC_LIBS)
include $(TOP)/configure/RULES

It is important to note that the EPICS build system attaches special significance to file names, not just extensions.

This Makefile will build the prng IOC (executable) from the two given C++ files and the database definition. Of these three
only prngMain.cpp exists currently. The file prng_registerRecordDeviceDriver.cpp is automatically generated from the database
definition. The database definition file prng.dbd is also generated by concatenating base.dbd with other .dbd files which we will
add later. At this point is effectively just a copy of base.dbd, which is part of the EPICS Base package and specifies, among other
things, the basic record types (see $EPICS_BASE/dbd/base.dbd).

At this point the prng IOC can now be compiled, and the resulting executable can be run. However, it will not be capable of
doing anything more then the softIoc executable. If fact they are functionally identical.

Basic EPICS Device Support
2 / 7

3.1 Device Definition

Our first task is to make an addition to the IOC database for our prng device. Create the file prngApp/src/prngdev.dbd:

device(ai,CONSTANT,devAiPrng,"Random")

This defines the device devAiPrng as support for an AI record with a CONSTANT input link named "Random". The name
devAiPrng must be unique in the IOC. The combination of record type and name string must also be unique. It is convention
that device support names should take the form devXxYyyy where Xx is the record type and Yyyy identifies the hardware to be
supported.

3.2 Writing Support

Now create the file prngApp/src/devprng.c with the following sections.

#include <stdlib.h>
#include <epicsExport.h>
#include <dbAccess.h>
#include <devSup.h>
#include <recGbl.h>

#include <aiRecord.h>

static long init_record(aiRecord *pao);
static long read_ai(aiRecord *pao);

struct prngState {
unsigned int seed;

};

Our device support code will be contained in the init_record and read_ai functions. Custom state information will be held in an
instance of the prngState structure.

struct {
long num;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiPrng = {
6, /* space for 6 functions */
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL

};
epicsExportAddress(dset,devAiPrng);

Now associate the name devAiPrng with our device support functions. This mechanism is a way of providing a set of functions
which the record support will use in to perform certain functions.

It should be noted that AI record support requires read_ai to be specified, but init_record is optional.

From the prospective of object oriented programming the record support can be regarded as a base class. This device support
inherits from the AI record support and provides definitions for two virtual methods. The AI record requires that read_ai be
provided while init is optional. In this way read_ai functions as a pure virtual method.

Basic EPICS Device Support
3 / 7

The number of functions record support will look for and the meaning of these functions is determined by record support. For in-
formation on a specific record types see the Record Reference Manual[RecRef] and the source (ie $EPICS_BASE/src/rec/aiRecord.c).

static long init_record(aiRecord *pao)
{

struct prngState* priv;
unsigned long start;

priv=malloc(sizeof(struct prngState));
if(!priv){
recGblRecordError(S_db_noMemory, (void*)pao,

"devAoTimebase failed to allocate private struct");
return S_db_noMemory;

}

recGblInitConstantLink(&pao->inp,DBF_ULONG,&start);

priv->seed=start;
pao->dpvt=priv;

return 0;
}

This init_record function is called once for each record in the IOC database which uses DTYP Random (ie devAiPrng device
support). It allocates space for the structure used to keep internal state, then parses the Constant input link string to get the initial
seed value.

The input link can only by a CONSTANT link so there is no need to verify this.

static long read_ai(aiRecord *pao)
{

struct prngState* priv=pao->dpvt;

pao->rval=rand_r(&priv->seed);

return 0;
}

Whenever a record using devAiPrng is processed read_ai is invoked. It simply invokes the thread-safe version of the rand
function to supply a raw (integer) value.

3.3 Building

Now modify prngApp/src/Makefile to include the prng database and support code. Then go to the devsupexample directory and
run make

TOP=../..
include $(TOP)/configure/CONFIG
PROD_IOC = prng
DBD += prng.dbd
prng_DBD += base.dbd
prng_DBD += prngdev.dbd # <- added
prng_SRCS += prng_registerRecordDeviceDriver.cpp
prng_SRCS += devprng.c # <- added
prng_SRCS_DEFAULT += prngMain.cpp
prng_SRCS_vxWorks += -nil-
prng_LIBS += $(EPICS_BASE_IOC_LIBS)
include $(TOP)/configure/RULES

Basic EPICS Device Support
4 / 7

3.4 Database Configuration

The next task is to create a IOC database which uses the Random device support. Place the following in prngApp/Db/prng.db
and add it to the makefile prngApp/Db/Makefile.

record(ai,"$(P)"){
field(DTYP,"$(D)")
field(DESC,"Random numbers")
field(SCAN,"1 second")
field(INP,"$(S)")
field(LINR,"LINEAR")
field(ESLO,1e-9)
field(EOFF,-1)

}

This will allow us to create several PVs generating random numbers. The combination of record type ai and the DTYP field are
used to identify the correct device support. When instantiated $(P), $(D), and $(S) will be replaced with the PV name, device
support type (Random), and initial seed value. These will be specified later.

The fields ESLO and EOFF serve to define a linear scale to use when converting (integer) raw values to (floating point) engineer-
ing units.

Note: when changing prngApp/Db/prng.db remember to run make to update db/prng.db.

3.5 Running

In devsupexample create the IOC boot infrastructure to run the first example (prng1).

makeBaseApp.pl -a linux-x86 -i -t ioc -p prng prng1

In iocBoot/iocprng1/st.cmd:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/prng.dbd"
prng_registerRecordDeviceDriver pdbbase
V Add this line V
dbLoadRecords("db/prng.db","P=test:prng,D=Random,S=324235")
cd ${TOP}/iocBoot/${IOC}
iocInit

Now run the IOC.

make
cd iocBoost/iocprng1
../../bin/linux-x86/prng st.cmd

Then watch the value of the PV test:prng

$ camonitor test:prng
test:prng 2009-02-21 15:29:15.364549 0.155918
test:prng 2009-02-21 15:29:16.364611 -0.681225
...

4 Asynchronous Example

The preceding example assumes that calls to read_ai will return quickly. This is true of rand_r which does only a simple
computation, but not true of many operations which access hardware. It these cases it is desirable to start an operation, spend
time doing other things, and only update the database when the result becomes available.

Basic EPICS Device Support
5 / 7

Support for this mode of operation is provided via the PACT flag. The following example creates another device support which
demonstrates asynchronous processing.

Add the following line to prngApp/src/prngdev.dbd

device(ai,CONSTANT,devAiPrngAsync,"Random Async")

Now create the file prngApp/src/devprngasync.c and add the following sections.

#include <stdlib.h>
#include <epicsExport.h>
#include <dbAccess.h>
#include <devSup.h>
#include <recSup.h>
#include <recGbl.h>
#include <callback.h>

#include <aiRecord.h>

static long init_record(aiRecord *pao);
static long read_ai(aiRecord *pao);

struct prngState {
unsigned int seed;
CALLBACK cb; /* New */

};

struct {
long num;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiPrngAsync = {
6, /* space for 6 functions */
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL

};
epicsExportAddress(dset,devAiPrngAsync); /* change name */

void prng_cb(CALLBACK* cb);

Note the addition to the prngState struct of a CALLBACK.

static long init_record(aiRecord *pao)
{

struct prngState* priv;
unsigned long start;

priv=malloc(sizeof(struct prngState));
if(!priv){
recGblRecordError(S_db_noMemory, (void*)pao,

"devAoTimebase failed to allocate private struct");
return S_db_noMemory;

}

/* New */

Basic EPICS Device Support
6 / 7

callbackSetCallback(prng_cb,&priv->cb);
callbackSetPriority(priorityLow,&priv->cb);
callbackSetUser(pao,&priv->cb);
priv->cb.timer=NULL;

recGblInitConstantLink(&pao->inp,DBF_ULONG,&start);

priv->seed=start;
pao->dpvt=priv;

return 0;
}

The callback function and priority are set.

static long read_ai(aiRecord *pao)
{

struct prngState* priv=pao->dpvt;

if(! pao->pact){
/* start async operation */
pao->pact=TRUE;
callbackSetUser(pao,&priv->cb);
callbackRequestDelayed(&priv->cb,0.1);
return 0;

}else{
/* complete operation */
pao->pact=FALSE;
return 0;

}
}

The operation of read_ai changes substantially. When the record is processed control passes into read_ai with the PACT field
set to false. To start an asynchronous operation this field is set to TRUE, and a delayed action is scheduled. While PACT is set
the IOC will not try to process this record again.

When the callback has completed it must manually process the record which will complete the operation and allow PACT to be
cleared.

void prng_cb(CALLBACK* cb)
{

aiRecord* prec;
struct prngState* priv;
struct rset* prset;
epicsInt32 raw;

callbackGetUser(prec,cb);
prset=(struct rset*)prec->rset;
priv=prec->dpvt;

raw=rand_r(&priv->seed);

dbScanLock((dbCommon*)prec);
prec->rval=raw;
(*prset->process)(prec);
dbScanUnLock((dbCommon*)prec);

}

This generic callback is taken from the EPICS Application Developer’s Guide[AppDev]. It manually invoke record processing.
It this way read_ai is called while PACT is set.

Note: Due to the way database processing and and the PACT flag are handled no additional locking is required. More complicated
senarios involving multiple PVs might require, for example, a mutex to guard priv→seed.

Basic EPICS Device Support
7 / 7

Remember to add devprngasync.c to prngApp/src/Makefile.

4.1 Running

The database file can be reused so only one change is necessary.

In iocBoot/iocprng1/st.cmd add a line:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/prng.dbd"
prng_registerRecordDeviceDriver pdbbase
dbLoadRecords("db/prng.db","P=test:prng,D=Random,S=324235")
V Add this line V
dbLoadRecords("db/prng.db","P=test:prngasync,D=Random Async,S=324235")
cd ${TOP}/iocBoot/${IOC}
iocInit

5 Now What

Notice that the two seed values are the same and observe the values of the two PVs at run time. Now change the delay on the
asynchronous callback (ie callbackRequestDelayed()) from 0.1 to 1.1 and compare the results.

These examples demonstrates writing device support for a single AI record. Support for other record types (BO, STRINGIN,
EVENT, . . .) differs only in which fields the read_* function must update. Also interesting are some of the other fields which ef-
fect conversion of raw values in the analog record types, and the ability to bypass this conversion and specify value in engineering
units directly.

6 References

[1] [RecRef] The Epics Collaboration EPICS 3.14 Record Reference Manual Wiki http://www.aps.anl.gov/epics/-
wiki/index.php/RRM_3-14

[2] [AppDev] Marty Kraimer et al. EPICS Application Developer’s Guide . http://www.aps.anl.gov/epics/base/R3-
14/10-docs/AppDevGuide.pdf

http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14
http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14
http://www.aps.anl.gov/epics/base/R3-14/10-docs/AppDevGuide.pdf
http://www.aps.anl.gov/epics/base/R3-14/10-docs/AppDevGuide.pdf

	Introduction
	Prepare IOC environment
	PRNG Example
	Device Definition
	Writing Support
	Building
	Database Configuration
	Running

	Asynchronous Example
	Running

	Now What
	References

